Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Intervalo de año de publicación
1.
PLoS Genet ; 17(11): e1009599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807903

RESUMEN

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , MicroARNs/fisiología , Biosíntesis de Proteínas/fisiología , Gránulos de Estrés/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Procesamiento Postranscripcional del ARN
2.
Nucleic Acids Res ; 45(21): 12481-12495, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053258

RESUMEN

The Ewing Sarcoma protein (EWS) is a multifaceted RNA binding protein (RBP) with established roles in transcription, pre-mRNA processing and DNA damage response. By generating high quality EWS-RNA interactome, we uncovered its specific and prevalent interaction with a large subset of primary microRNAs (pri-miRNAs) in mammalian cells. Knockdown of EWS reduced, whereas overexpression enhanced, the expression of its target miRNAs. Biochemical analysis revealed that multiple elements in target pri-miRNAs, including the sequences flanking the stem-loop region, contributed to high affinity EWS binding and sequence swap experiments between target and non-target demonstrated that the flanking sequences provided the specificity for enhanced pri-miRNA processing by the Microprocessor Drosha/DGCR8. Interestingly, while repressing Drosha expression, as reported earlier, we found that EWS was able to enhance the recruitment of Drosha to chromatin. Together, these findings suggest that EWS may positively and negatively regulate miRNA biogenesis via distinct mechanisms, thus providing a new foundation to understand the function of EWS in development and disease.


Asunto(s)
Proteína EWS de Unión a ARN/fisiología , Ribonucleasa III/metabolismo , Cromatina/metabolismo , Electroforesis en Gel de Poliacrilamida , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunoprecipitación , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo
3.
Electron. j. biotechnol ; 14(2): 11-11, Mar. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591941

RESUMEN

Background: As key gene regulators, microRNAs post-transcriptionally modulate gene expression via binding to partially complementary sequence in the 3' UTR of target mRNA. An accurate, rapid and quantitative tool for sensing and validation of miRNA targets is of crucial significance to decipher the functional implications of miRNAs in cellular pathways. Results: Taking advantage of an improved restriction-free cloning method, we engineered a novel built-in dual luciferase reporter plasmid where Firefly and Renilla luciferase genes were assembled in a single plasmid named pFila. This design eliminates the transfection of a separate control plasmid and thus minimizes the time and labor required for miRNA-target sensing assays. pFila consistently produces Firefly and Renilla luciferase activities when transfected into human-, monkey- and mouse-derived mammalian cell systems. Moreover, pFila is capable of recapitulating the interaction of miR-16 and its known target CCNE1 in Hela cells. Additionally, pFila is shown to be a sensitive miR-biosensor by evaluating the inhibition efficiency of endogenous miRNA. Conclusions: pFila would facilitate miRNA target identification and verification in a rapid and simplified manner. Also, pFila is a sensitive biosensor for active miRNA profiling in vivo.


Asunto(s)
Luciferasas , MicroARNs/genética , MicroARNs/metabolismo , Técnicas Biosensibles , Células Cultivadas , Genes Reporteros , Ligasas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA